• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An examination of bias of facial analysis based BMI prediction models

    Date
    2022-06-19
    Author
    Siddiqui, Hera
    Rattani, Ajita
    Ricanek, Karl
    Hill, Twyla
    Metadata
    Show full item record
    Citation
    H. Siddiqui, A. Rattani, K. Ricanek and T. Hill, "An Examination of Bias of Facial Analysis based BMI Prediction Models," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022, pp. 2925-2934, doi: 10.1109/CVPRW56347.2022.00330.
    Abstract
    Obesity is one of the most important public health problems that the world is facing today. A recent trend is in the development of intervention tools that predict BMI using facial images for weight monitoring and management to combat obesity. Most of these studies used BMI annotated facial image datasets that mainly consisted of Caucasian subjects. Research on bias evaluation of face-based gender-, age-classification, and face recognition systems suggest that these technologies perform poorly for women, dark-skinned people, and older adults. The bias of facial analysis-based BMI prediction tools has not been studied until now. This paper evaluates the bias of facial-analysis-based BMI prediction models across Caucasian and African-American Males and Females. Experimental investigations on the gender, race, and BMI balanced version of the modified MORPH-II dataset suggested that the error rate in BMI prediction was least for Black Males and highest for White Females. Further, the psychology-related facial features correlated with weight suggested that as the BMI increases, the changes in the facial region are more prominent for Black Males and the least for White Females. This is the reason for the least error rate of the facial analysis-based BMI prediction tool for Black Males and highest for White Females.
    Description
    Click on the DOI to access this article (may not be free).
    URI
    https://doi.org/10.1109/CVPRW56347.2022.00330
    https://soar.wichita.edu/handle/10057/24860
    Collections
    • SOC Faculty Publications
    • SoC Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV