• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantitative assessment of additive leachates in abiotic weathered tire cryogrinds and its application to tire wear particles in roadside soil samples

    Date
    2023-01-01
    Author
    Thomas, Jomin
    Cutright, Teresa
    Pugh, Coleen
    Soucek, Mark D.
    Metadata
    Show full item record
    Citation
    Thomas, J., Cutright, T., Pugh, C., & Soucek, M. D. (2023). Quantitative assessment of additive leachates in abiotic weathered tire cryogrinds and its application to tire wear particles in roadside soil samples. Chemosphere, 311, 137132. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137132
    Abstract
    Tire and road wear particles (TRWP) are becoming an important research question with potential risks on ecological system. A comprehensive understanding of their detection and quantification in soils are challenged by the inherent technological inconsistencies, lack of well-set standardized methods, and generalized protocols. Reference tire cryogrinds were subjected to abiotic weathering. Next, the total environmental availability from parent elastomers and the release of additives from tire tread compounds were evaluated using mass concentration factors obtained from abiotic weathered tire cryogrinds. Headspace Gas chromatography-mass spectroscopy (HS-GC-MS) was employed as a nontargeted, suspect screening analysis technique to identify the tire related intermediates. Benzothiazole, 1,2-dihydro-2,2,4-trimethylquinoline (TMQ), aniline, phenol and benzoic acid were detected as tire tetrahydrofuran leachates. Total environmental availability of TMQ and benzothiazole were in the range of 1.7 × 10?3 and 0.11, respectively. Benzene and benzoic acid derivatives were identified as marker compounds for environmental samples. A TRWP content evaluation was made possible by quantifying marker concentrations and reference tire cryogrind formulation. TRWP content in the size range of 1–5 mm was between 800 and 1300 ?g/g and 1200–3100 ?g/g TRWP in Ohio and Kansas soil. For TRWP less than 1 mm, 0.15–2.1 wt% content was observed in Kansas and Ohio samples and were seemingly dependent on the locations and the traffic. This simple, widely applicable quantification method for TRWP analysis provides a database of tire degradation and TRWP intermediates. The TRWP content research is critical for further TRWP research development in terrestrial environment.
    Description
    Click on the DOI to access this article (may not be free).
    URI
    https://doi.org/10.1016/j.chemosphere.2022.137132
    https://soar.wichita.edu/handle/10057/24213
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV