• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhanced pool boiling critical heat flux on tilted heating surfaces using columnar-post wicks

    Date
    2022-01-25
    Author
    Borumand, Mohammad
    Hwang, Gisuk
    Metadata
    Show full item record
    Citation
    Borumand, M, & Hwang, G. "Enhanced Pool Boiling Critical Heat Flux on Tilted Heating Surfaces Using Columnar-Post Wicks." Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition. Volume 11: Heat Transfer and Thermal Engineering. Virtual, Online. November 1–5, 2021. V011T11A028. ASME. https://doi.org/10.1115/IMECE2021-70054
    Abstract
    The upper heat flux limit of nucleate pool-boiling heat transfer (NPHT), i.e., Critical Heat Flux (CHF), results in system burnouts in various energy and industrial applications, and the understandings of the tailored CHF mechanisms are crucial to develop robust thermal management systems. In various applications, the understandings of the tailored CHF mechanisms are essential for design flexibility and operation sustainability, but previous CHF tailoring studies focused on upward-facing heater orientation. This study examines the tailored hydrodynamic-instability using columnar post wick array to enhance CHF on tilted heater surfaces (with surface orientation θ = 60°–130°). Liquid supply enhances via the capillary flow through the post wicks, while the produced vapor efficiently escapes through pore space among the post wicks. The enhanced CHF are predicted using a modified interfacial lift-off CHF hydrodynamic model that relies on classical two-dimensional interfacial instability theory. On the tilted plain surface with the surface orientation from 60° to 130°, the model predicts the CHF, qCHF = 126.5 to 92.5 W/cm2 at the critical hydrodynamic instability wavelength, λcr = 9.2 to 12.7 mm, respectively, using water as a working fluid. The enhanced CHF is predicted at the surface orientations of θ = 90° and 120°, showing a maximum of 185% and 250% increase, respectively. The maximum enhancement occurs at the smallest columnar-post pitch distances, lp = 2.5 mm, where qCHF increases from 104 to 295 W/cm2 for θ = 90°, and from 89 to 313 W/cm2 for θ = 120°. The developed model will provide insights into the tailored hydrodynamic instability wavelength at tilted angle via engineered surface.
    Description
    Click on the DOI link to view this conference paper (may not be free).
    URI
    https://doi.org/10.1115/IMECE2021-70054
    https://soar.wichita.edu/handle/10057/23278
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV