• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An experimental evaluation on deepfake detection using deep face recognition

    View/Open
    Preprint (2.384Mb)
    Date
    2021-10-11
    Author
    Ramachandran, Sreeraj
    Nadimpalli, Aakash Varma
    Rattani, Ajita
    Metadata
    Show full item record
    Citation
    S. Ramachandran, A. V. Nadimpalli and A. Rattani, "An Experimental Evaluation on Deepfake Detection using Deep Face Recognition," 2021 International Carnahan Conference on Security Technology (ICCST), 2021, pp. 1-6, doi: 10.1109/ICCST49569.2021.9717407.
    Abstract
    Significant advances in deep learning have obtained hallmark accuracy rates for various computer vision applications. However, advances in deep generative models have also led to the generation of very realistic fake content, also known as deepfakes, causing a threat to privacy, democracy, and national security. Most of the current deepfake detection methods are deemed as a binary classification problem in distinguishing authentic images or videos from fake ones using two-class convolutional neural networks (CNNs). These methods are based on detecting visual artifacts, temporal or color inconsistencies produced by deep generative models. However, these methods require a large amount of real and fake data for model training and their performance drops significantly in cross dataset evaluation with samples generated using advanced deepfake generation techniques. In this paper, we thoroughly evaluate the efficacy of deep face recognition in identifying deepfakes, using different loss functions and deepfake generation techniques. Experimental investigations on challenging Celeb-DF and FaceForensics++ deepfake datasets suggest the efficacy of deep face recognition in identifying deepfakes over two-class CNNs and the ocular modality. Reported results suggest a maximum Area Under Curve (AUC) of 0.98 and Equal Error Rate (EER) of 7.1% in detecting deepfakes using face recognition on the Celeb-DF dataset. This EER is lower by 16.6% compared to the EER obtained for the two-class CNN and the ocular modality on the Celeb-DF dataset. Further on the FaceForensics++ dataset, an AUC of 0.99 and EER of 2.04% was obtained. The use of biometric facial recognition technology has the advantage of bypassing the need for a large amount of fake data for model training and obtaining better generalizability to evolving deepfake creation techniques.
    Description
    Preprint version from arXiv. Conference paper available from doi link (may not be free).
    URI
    https://soar.wichita.edu/handle/10057/23051
    http://doi.org/10.1109/ICCST49569.2021.9717407
    Collections
    • SoC Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV