• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Office of Research
    • NIAR: National Institute for Aviation Research
    • NIAR Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Office of Research
    • NIAR: National Institute for Aviation Research
    • NIAR Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental and numerical analysis of wrinkles influence on damage mechanisms and strength of L-shape cross-ply composite beams

    Date
    2022-03-28
    Author
    Naderi, M.
    Ji, M.
    Liyanage, Shakya S.
    Palliyaguru, Upul R.
    Soghrati, S.
    Iyyer, N.
    Seneviratne, Waruna P.
    Phan, N.
    Metadata
    Show full item record
    Citation
    Naderi, M., Ji, M., Liyanage, S., Palliyaguru, U., Soghrati, S., Iyyer, N., Seneviratne, W., & Phan, N. (2022, March 28). Experimental and numerical analysis of wrinkles influence on damage mechanisms and strength of L-shape cross-ply composite beams. Composites Science and Technology. Retrieved April 12, 2022, from https://doi.org/10.1016/j.compscitech.2022.109420
    Abstract
    In this work, experimental and finite element (FE) analysis of L-shape cross-ply fiber-reinforced composite beams are carried out to investigate the effect of out-of-plane wrinkles on the interlaminar strength and competing damage mechanisms. L-shape laminates are fabricated with manufacturing and geometrical variabilities, cured in a temperature and pressure-controlled autoclave process, and mechanically tested under four-point-bending tests. An in-situ high-fidelity FE models are constructed based on in-plane micrograph images of beam cross sections. Explicit FE failure simulations are performed to study the effect of wrinkles and to differentiate among different failure modes. Simulation results show a reasonable agreement with the test data in terms of delamination onsets, matrix cracking and through thick strength. Combined delamination, matrix cracking and kinking pattern is significant in the specimens with visible out-of-plane wrinkle. While, in the specimen with no noticeable wrinkle, a major single delamination is observable leading to final failure. The competing damage mechanisms is highly dependent on the assumed fracture properties and in-situ-condition of finite element model, regardless of good agreement between simulated global mechanical response and test data.
    Description
    Click on the DOI to access this article (may not be free).
    URI
    https://doi.org/10.1016/j.compscitech.2022.109420
    https://soar.wichita.edu/handle/10057/23048
    Collections
    • NIAR Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV