• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Learning task-oriented dexterous grasping from human knowledge

    View/Open
    Preprint (1.771Mb)
    Date
    2021-05-30
    Author
    Li, Hui
    Zhang, Yinlong
    Li, Yanan
    He, Hongsheng
    Metadata
    Show full item record
    Citation
    H. Li, Y. Zhang, Y. Li and H. He, "Learning Task-Oriented Dexterous Grasping from Human Knowledge," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 6192-6198, doi: 10.1109/ICRA48506.2021.9562073.
    Abstract
    Industrial automation requires robot dexterity to automate many processes such as product assembling, packaging, and material handling. The existing robotic systems lack the capability to determining proper grasp strategies in the context of object affordances and task designations. In this paper, a framework of task-oriented dexterous grasping is proposed to learn grasp knowledge from human experience and to deploy the grasp strategies while adapting to grasp context. Grasp topology is defined and grasp strategies are learned from an established dataset for task-oriented dexterous manipulation. To adapt to various grasp context, a reinforcement-learning based grasping policy was implemented to deploy different task-oriented strategies. The performance of the system was evaluated in a simulated grasping environment by using an AR10 anthropomorphic hand installed in a Sawyer robotic arm. The proposed framework achieved a hit rate of 100% for grasp strategies and an overall top-3 match rate of 95.6%. The success rate of grasping was 85.6% during 2700 grasping experiments for manipulation tasks given in natural-language instructions.
    Description
    Preprint available.
    URI
    https://soar.wichita.edu/handle/10057/23034
    http://doi.org/10.1109/ICRA48506.2021.9562073
    Collections
    • SoC Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV