• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An automatic calibration technique for force sensors in a dynamic smart floor environment

    Date
    2021-10-17
    Author
    Burns, Nicholas Brent
    Daniel, Kathryn
    Huber, Manfred
    Zaruba, Gergely
    Metadata
    Show full item record
    Citation
    N. B. Burns, K. Daniel, M. Huber and G. Záruba, "An Automatic Calibration Technique for Force Sensors in a Dynamic Smart Floor Environment," 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2021, pp. 2471-2478, doi: 10.1109/SMC52423.2021.9659228.
    Abstract
    Pressure-sensitive smart floors deployed within homes can give great insight to the health and activity level of individuals through gait and location information. Due to the ever-changing dynamic nature of household deployments involving furniture movement, floor tile shifts, and sensor drift, challenges arise in ensuring the constant reliability of floor sensor readings over time. This paper presents a procedure to automatically calibrate a smart floor’s force sensors without specialized physical effort. The calibration algorithm automatically filters out non-human static weight while retaining weight generated by human activity. This technique is designed to correctly translate sensor values to weight units even when direct access to the force sensors is not available and when a shared tile floor sits above the sensor grid. These calibrated sensor values can then feed machine learning techniques used to extract individual contact points generated by a person’s walking cycle. Using known human weights but no knowledge of the human’s location or walking trajectory, this calibration technique resulted in small percentage differences of -7.8%, - 4.8%, and -1.6% for the mean, median, and mode of calibrated smart floor walking sequences, respectively.
    Description
    Click on the DOI link to view this conference paper (may not be free).
    URI
    https://soar.wichita.edu/handle/10057/22845
    http://doi.org/10.1109/SMC52423.2021.9659228
    Collections
    • SoC Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV