• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Toward on-device weight monitoring from selfie face images using smartphones

    Date
    2022-02-24
    Author
    Siddiqui, Hera
    Rattani, Ajita
    Cure, Laila
    Woods, Nikki Keene
    Lewis, Rhonda K.
    Twomey, Janet M.
    Smith-Campbell, Betty
    Hill, Twyla J.
    Metadata
    Show full item record
    Citation
    Siddiqui H. et al. (2022) Toward On-Device Weight Monitoring from Selfie Face Images Using Smartphones. In: Comito C., Forestiero A., Zumpano E. (eds) Integrating Artificial Intelligence and IoT for Advanced Health Informatics. Internet of Things (Technology, Communications and Computing). Springer, Cham. https://doi.org/10.1007/978-3-030-91181-2_4
    Abstract
    Obesity is a serious health problem that is on the rise at the global level. Recent studies suggest that BMI can be inferred from facial images using deep learning-based convolutional neural networks (CNNs) for obesity classification with about 85–90% accuracy. However, training and testing these deep learning models involves high computation and storage due to the involvement of millions of parameters. A recent trend is the use of lightweight CNN models to facilitate on-device computation in resource-constrained mobile and wearable devices. In this study, we evaluate several lightweight CNNs such as MobileNet-V2, ShuffleNet-V2, and lightCNN-29 for BMI prediction and obesity classification from facial images captured using smartphones. The comparative analysis is done with heavyweight VGG-16 and ResNet-50-based CNN models. These lightweight models when deployed on smartphones can act as self-diagnostic tool in weight changes and obesity monitoring. These tools can facilitate remote monitoring of patients, obtaining patients’ vital signs, and in improving the quality of care provided. Self-diagnostic tools would also help in keeping users’ health data private, safe, and secure.
    Description
    Click on the DOI link to access this book chapter (may not be free).
    URI
    https://doi.org/10.1007/978-3-030-91181-2_4
    https://soar.wichita.edu/handle/10057/22760
    Collections
    • ISME Research Publications
    • PHS Research Publications
    • PSY Research Publications
    • SOC Faculty Publications
    • SoC Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV