• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Density evolution for noise propagation analysis in biological networks

    View/Open
    Open access PDF (4.074Mb)
    Date
    2022-01-13
    Author
    Kotiang, Stephen
    Eslami, Ali
    Metadata
    Show full item record
    Citation
    S. Kotiang and A. Eslami, "Density Evolution for Noise Propagation Analysis in Biological Networks," in IEEE Access, vol. 10, pp. 4261-4270, 2022, doi: 10.1109/ACCESS.2022.3140720.
    Abstract
    Accurate prediction of noise propagation in biological networks is key to understanding faithful signal propagation in gene networks as well as for designing noise-tolerant synthetic gene circuits. Knowledge on how biological fluctuations propagate up the development ladder of biological systems is currently lacking. Similarly, little research effort has been devoted to the analysis of error propagation in biological networks. To capture and characterize error evolution, this paper considers a Boolean network (BN) model representation of a biological network such that nodes on the graph represent diverse biological entities, e.g., proteins, genes, messenger-RNAs, etc. In addition, the network edges capture the interactions between nodes. By conducting a density evolution analysis on the graphical model based on node functionalities, a recursive closed-form expression for error propagation is derived. Subsequently, the recursive equation allows us to obtain a necessary condition to guarantee noise-error elimination in dynamic discrete gene networks. Our analytical formulations provide a step toward achieving optimal network parameters for resilience against variability or noise in biology
    Description
    This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 4.
    URI
    https://soar.wichita.edu/handle/10057/22698
    http://doi.org/10.1109/ACCESS.2022.3140720
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV