Show simple item record

dc.contributor.authorAndrzejewski, Roch
dc.contributor.authorEntwistle, Andrew
dc.contributor.authorGiles, Roger
dc.contributor.authorShvartsburg, Alexandre A.
dc.date.accessioned2021-10-05T00:31:34Z
dc.date.available2021-10-05T00:31:34Z
dc.date.issued2021-08-23
dc.identifier.citationAndrzejewski, R., Entwistle, A., Giles, R., & Shvartsburg, A. A. (2021). Ion mobility spectrometry of superheated macromolecules at electric fields up to 500 td. Analytical Chemistry, doi:10.1021/acs.analchem.1c02299en_US
dc.identifier.issn0003-2700
dc.identifier.issn1520-6882
dc.identifier.urihttps://doi.org/10.1021/acs.analchem.1c02299
dc.identifier.urihttps://soar.wichita.edu/handle/10057/22137
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractSince its inception in 1980s, differential or field asymmetric waveform ion mobility spectrometry (FAIMS) has been implemented at or near ambient gas pressure. We recently developed FAIMS at 15–30 Torr with mass spectrometry and utilized it to analyze amino acids, isomeric peptides, and protein conformers. The separations broadly mirrored those at atmospheric pressure, save for larger proteins that (as predicted) exhibited dipole alignment at ambient but not low pressure. Here we reduce the pressure down to 4.7 Torr, allowing normalized electric fields up to 543 Td—double the maximum in prior FAIMS or IMS studies of polyatomic ions. Despite the collisional heating to ∼1000 °C at the waveform peaks, the proteins of size from ubiquitin to albumin survived intact. The dissociation of macromolecules in FAIMS appears governed by the average ion temperature over the waveform cycle, unlike the isomerization controlled by the peak temperature. The global separation trends in this “superhot” regime extend those at moderately low pressures, with distinct conformers and no alignment as theorized. Although the scaling of the compensation voltage with the field fell below cubic at lower fields, the resolving power increased and the resolution of different proteins or charge states substantially improved.en_US
dc.description.sponsorshipThe work at WSU was supported by the NSF CAREER Award (CHE-1552640). We thank Patrick Knight (SRL) for useful discussions.en_US
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofseriesAnalytical Chemistry;
dc.subjectPeptides and proteinsen_US
dc.subjectIonsen_US
dc.subjectAtomic layer depositionen_US
dc.subjectMolecular structureen_US
dc.subjectPoweren_US
dc.titleIon mobility spectrometry of superheated macromolecules at electric fields up to 500 Tden_US
dc.typeArticleen_US
dc.rights.holderCopyright © 2021 American Chemical Societyen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record