• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards on-device face recognition in body-worn cameras

    Date
    2021-06-29
    Author
    Almadan, Ali
    Rattani, Ajita
    Metadata
    Show full item record
    Citation
    Almadan, A., & Rattani, A. (2021). Towards on-device face recognition in body-worn cameras. Paper presented at the Proceedings - 9th International Workshop on Biometrics and Forensics, IWBF 2021, doi:10.1109/IWBF50991.2021.9465079
    Abstract
    Face recognition technology related to recognizing identities is widely adopted in intelligence gathering, law enforcement, surveillance, and consumer applications. Recently, this technology has been ported to smartphones and body-worn cameras (BWC). Face recognition technology in body-worn cameras is used for surveillance, situational awareness, and keeping the officer safe. Only a handful of academic studies exist in face recognition using the body-worn camera. A recent study has assembled BWCFace facial image dataset acquired using a body-worn camera and evaluated the ResNet-50 model for face identification. However, for real-time inference in resource constraint body-worn cameras and privacy concerns involving facial images, on-device face recognition is required. To this end, this study evaluates lightweight MobileNet-V2, EfficientNet-BO, LightCNN-9 and LightCNN-29 models for face identification using body-worn camera. Experiments are performed on a publicly available BWCface dataset. The real-time inference is evaluated on three mobile devices. The comparative analysis is done with heavy-weight VGG-16 and ResNet-50 models along with six hand-crafted features to evaluate the trade-off between the performance and model size. Experimental results suggest the difference in maximum rank-l accuracy of lightweight LightCNN-29 over best-performing ResNet-50 is 1.85% and the reduction in model parameters is 23.49M. Most of the deep models obtained similar performances at rank-5 and rank-10. The inference time of LightCNNs is 2.1x faster than other models on mobile devices. The least performance difference of 14% is noted between LightCNN-29 and Local Phase Quantization (LPQ) descriptor at rank-l. In most of the experimental settings, lightweight LightCNN models offered the best trade-off between accuracy and the model size in comparison to most of the models.
    Description
    Click on the DOI link to access this conference paper at the publisher's website (may not be free).
    URI
    https://doi.org/10.1109/IWBF50991.2021.9465079
    https://soar.wichita.edu/handle/10057/22135
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV