• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DTL-DephosSite: Deep transfer learning based approach to predict dephosphorylation sites

    View/Open
    Article (948.8Kb)
    Date
    2021-06
    Author
    Chaudhari, Meenal
    Thapa, Niraj
    Ismail, Hamid D.
    Chopade, Sandhya
    Caragea, Doina
    Köhn, Maja
    Newman, Robert H.
    Kc, Dukka B.
    Metadata
    Show full item record
    Citation
    Chaudhari M, Thapa N, Ismail H, Chopade S, Caragea D, Köhn M, Newman RH and KC DB (2021) DTL-DephosSite: Deep Transfer Learning Based Approach to Predict Dephosphorylation Sites. Front. Cell Dev. Biol. 9:662983. doi: 10.3389/fcell.2021.662983
    Abstract
    Phosphorylation, which is mediated by protein kinases and opposed by protein phosphatases, is an important post-translational modification that regulates many cellular processes, including cellular metabolism, cell migration, and cell division. Due to its essential role in cellular physiology, a great deal of attention has been devoted to identifying sites of phosphorylation on cellular proteins and understanding how modification of these sites affects their cellular functions. This has led to the development of several computational methods designed to predict sites of phosphorylation based on a protein’s primary amino acid sequence. In contrast, much less attention has been paid to dephosphorylation and its role in regulating the phosphorylation status of proteins inside cells. Indeed, to date, dephosphorylation site prediction tools have been restricted to a few tyrosine phosphatases. To fill this knowledge gap, we have employed a transfer learning strategy to develop a deep learning-based model to predict sites that are likely to be dephosphorylated. Based on independent test results, our model, which we termed DTL-DephosSite, achieved efficiency scores for phosphoserine/phosphothreonine residues of 84%, 84% and 0.68 with respect to sensitivity (SN), specificity (SP) and Matthew’s correlation coefficient (MCC). Similarly, DTL-DephosSite exhibited efficiency scores of 75%, 88% and 0.64 for phosphotyrosine residues with respect to SN, SP, and MCC. © Copyright © 2021 Chaudhari, Thapa, Ismail, Chopade, Caragea, Köhn, Newman and KC.
    Description
    Copyright © 2021 Chaudhari, Thapa, Ismail, Chopade, Caragea, Köhn, Newman and KC. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
    URI
    https://soar.wichita.edu/handle/10057/21661
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV