• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical investigation of self-piercing riveted dual layer joint

    View/Open
    Thesis (7.311Mb)
    Date
    2008-12
    Author
    Krishnappa, Uma Shankar
    Advisor
    Lankarani, Hamid M.
    Metadata
    Show full item record
    Abstract
    Self-piercing riveting (SPR) is a high-speed mechanical fastening technique for point joining of sheet-material components. SPR is becoming important in automotive applications for aluminium vehicle body assembly. However, compared with current sheet-metal joining processes in the automotive industry, the effects of various parameters such as mechanical properties, rivet setting methods and systems, methods of removing self-piercing rivets, etc. A study examining the effect of specimen configuration on the mechanical behavior of self-piercing riveted, dual-layer joints in aluminium alloys was conducted. It has observed that the specimen configuration had a significant effect on the strength and failure mechanism of a self-piercing riveted dual-layer joint. The basic aspects of SPR process forming by conducting both explicit and implicit analysis have been investigated in this thesis. It was found that the operating force-deformation curve of SPR process was determined by the rivet deformation force and its displacement. Under certain process conditions, an increase in inertia effect due to high velocity of metal forming process results was not significant to an extent. In this research, the springback characteristic parameters of the SPR process were also studied. The springback analysis carried out at the end of the forming process showed that the dimensional change in the part due to springback was not significant.
    Description
    Wichita State University, College of Engineering, Dept. of Mechanical Engineering

    Includes bibliographic references (leaves 51-53)
    URI
    http://hdl.handle.net/10057/2105
    Collections
    • CE Theses and Dissertations
    • Master's Theses
    • ME Theses and Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV