• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Probing fairness of mobile ocular biometrics methods across gender on VISOB 2.0 dataset

    Date
    2021-02-21
    Author
    Krishnan, Anoop
    Almadan, Ali
    Rattani, Ajita
    Metadata
    Show full item record
    Citation
    Krishnan, A., Almadan, A., & Rattani, A. (2021). Probing fairness of mobile ocular biometrics methods across gender on VISOB 2.0 dataset doi:10.1007/978-3-030-68793-9_16
    Abstract
    Recent research has questioned the fairness of face-based recognition and attribute classification methods (such as gender and race) for dark-skinned people and women. Ocular biometrics in the visible spectrum is an alternate solution over face biometrics, thanks to its accuracy, security, robustness against facial expression, and ease of use in mobile devices. With the recent COVID-19 crisis, ocular biometrics has a further advantage over face biometrics in the presence of a mask. However, fairness of ocular biometrics has not been studied till now. This first study aims to explore the fairness of ocular-based authentication and gender classification methods across males and females. To this aim, VISOB 2.0 dataset, along with its gender annotations, is used for the fairness analysis of ocular biometrics methods based on ResNet-50, MobileNet-V2 and lightCNN-29 models. Experimental results suggest the equivalent performance of males and females for ocular-based mobile user-authentication in terms of genuine match rate (GMR) at lower false match rates (FMRs) and an overall Area Under Curve (AUC). For instance, an AUC of 0.96 for females and 0.95 for males was obtained for lightCNN-29 on an average. However, males significantly outperformed females in deep learning based gender classification models based on ocular-region.
    Description
    Click on the URL link to access this conference paper on the publisher’s website (may not be free.)
    URI
    https://doi.org/10.1007/978-3-030-68793-9_16
    https://soar.wichita.edu/handle/10057/20071
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV