Neutrino interaction classification with a convolutional neural network in the DUNE far detector
Date
2020-11-09Author
Abi, B.
Acciarri, R.
Acero, Mario A.
Muether, Mathew
Meyer, Holger
Solomey, Nickolas
Metadata
Show full item recordCitation
Abi, B., Acciarri, R., Acero, M. A., Adamov, G., Adams, D., Adinolfi, M., . . . Zwaska, R. (2020). Neutrino interaction classification with a convolutional neural network in the DUNE far detector. Physical Review D, 102(9) doi:10.1103/PhysRevD.102.092003
Abstract
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
Description
Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.