• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhanced wickability of thin non-uniform sintered particle wicks using Lattice Boltzmann Method

    Date
    2021-02-16
    Author
    Borumand, Mohammad
    Lee, Taehun
    Hwang, Gisuk
    Metadata
    Show full item record
    Citation
    Borumand, M., Lee, T., & Hwang, G. (2020). Enhanced wickability of thin non-uniform sintered particle wicks using lattice boltzmann method. Paper presented at the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), , 11 doi:10.1115/IMECE2020-24311
    Abstract
    Thin non-uniform particle size wicks are essential to improve the maximum heat flux of two-phase thermal management systems by improving the wickability. To understand the enhanced wickability, we examine a pore-scale capillary flow within the thin sintered particle wick using a free-energy-based, single-component, two-phase Lattice Boltzmann Method (LBM) with a minimal parasitic current. The developed LBM approach is validated through the rate-of-rise in the two-parallel plates with parallel plates spacing of W = 48 against analytical Bosanquet equation, achieving the RMS error below 10%. The LBM predicts the rate-of-rise through the uniform and non-uniform particle-size wicks between two-parallel plate, including the capillary meniscus front and dynamic capillary filling. At the same plate spacing and porosity, i.e., W = 48 lu and ε = 0.75, the non-uniform particle size wick achieves enhanced wickability by providing the selective flow pathway through pore networks formed in the smaller pores between the small/large particles, which is in qualitative agreement with previous experimental results. The enhancement of the maximum and minimum dimensionless liquid height and the liquid-filled pore ratio of non-uniform particle size wick is found to be up to 11.1, 27.47, and 26.11%, respectively. The simulation results provide insights into the optimal wick structures for high heat flux two-phase thermal management system by enhancing the wickability through the non-uniform particle (or pore) sizes.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    https://doi.org/10.1115/IMECE2020-24311
    https://soar.wichita.edu/handle/10057/19835
    Collections
    • ME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV