• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Aerospace Engineering
    • AE Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Aerospace Engineering
    • AE Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solution of Maxwell’s equations for nonrectangular electromagnetic applications

    Date
    2021-01
    Author
    Sharma, Vishal
    Hoffmann, Klaus A.
    Metadata
    Show full item record
    Citation
    Sharma, V., & Hoffmann, K. A. (2021). Solution of maxwell’s equations for nonrectangular electromagnetic applications. Journal of Thermophysics and Heat Transfer, 35(1), 38-52. doi:10.2514/1.T5984
    Abstract
    The use of a fourth-order modified Runge–Kutta (MRK) scheme on a transformed coordinate system with Maxwell’s equations for nonrectangular domains and applications is presented. Maxwell’s equations are the governing equations for modeling electromagnetic wave propagation involving scattering, radiating structures, transmission lines, radar, biomedical applications, and nondestructive testing. Because of complex geometries in most problems where the material boundaries are not parallel to the grid axis, the application of finite differencing schemes in physical coordinates becomes nonviable. Therefore, by transforming the arbitrary-shaped structures to a uniform rectangular grid, numerical schemes and boundary conditions can be easily implemented. Numerical results for four cases are presented in this paper. Accuracy of the scheme has been established by comparing numerical results with the exact solution and error distribution plots. In the third case, scattering from the lossless and the lossy square cylindrical dielectric device where the plane wave source is injected using the total-field–scattered-field technique has been investigated. The results are compared with the results obtained from the benchmark finite difference time domain scheme. Lastly, the application of the numerical model to simulate scattering from curved boundaries has been presented in the fourth example.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    https://doi.org/10.2514/1.T5984
    https://soar.wichita.edu/handle/10057/19788
    Collections
    • AE Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV