• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reinforcing antibacterial hydrogels through electrospun nanofiber layers for soft tissue engineering

    Date
    2020-11-20
    Author
    Khan, Waseem Sabir
    Pyarasani, Suhasini
    Asmatulu, Ramazan
    Metadata
    Show full item record
    Citation
    Khan, W.S., Pyarasani, S. & Asmatulu, R. Reinforcing antibacterial hydrogels through electrospun nanofiber layers for soft tissue engineering. J Polym Res 27, 380 (2020)
    Abstract
    Hydrogels are polymeric substances with hydrophilic features, which make them capable of holding large volume of liquids in their three-dimensional network structures. Hydrogels are finding wide ranges of applications in several biomedical, industrial, and environmental fields. In this study, hydrogels were prepared using chitosan powders, and reinforced with electrospun poly (methyl methacrylate) (PMMA) and poly vinyl chloride (PVC) nanofibers. The chitosan hydrogels were produced by dissolving chitosan in 1% acetic acid solution and mixing thoroughly. Gentamycin, an antibacterial agent, was also added to further increase the effectiveness of hydrogels for biomedical purposes. The prepared hydrogels were subjected to swelling, Fourier-transform infrared spectroscopy (FTIR) and compression tests. The test results showed that hydrogel provided very high-water absorption capacity (10–11 folds). FTIR studies conducted on the hydrogel samples with different percentages of inclusions revealed that some of the compounds were covalently bonded in the structures, which directly affect the mechanical strength and liquid absorption capacity. The compression tests performed at different loads indicated that PVC and PMMA nanofibers reinforced hydrogels provided up to 75% much higher compression strengths when compared to the base-case (without any reinforcement).
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    https://doi.org/10.1007/s10965-020-02354-4
    https://soar.wichita.edu/handle/10057/19656
    Collections
    • ME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV