• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Office of Research
    • NIAR: National Institute for Aviation Research
    • NIAR Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Office of Research
    • NIAR: National Institute for Aviation Research
    • NIAR Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of refill friction stir spot weld spacing and edge margin on mechanical properties of multi-spot-welded panels

    View/Open
    Balasubramaniam_2020.pdf (7.318Mb)
    Date
    2020-06-07
    Author
    Balasubramaniam, Guruvignesh Lakshmi
    Boldsaikhan, Enkhsaikhan
    Fukada, Shintaro
    Fujimoto, Mitsuo
    Kamimuki, Kenichi
    Metadata
    Show full item record
    Citation
    Lakshmi Balasubramaniam, G.; Boldsaikhan, E.; Fukada, S.; Fujimoto, M.; Kamimuki, K. Effects of Refill Friction Stir Spot Weld Spacing and Edge Margin on Mechanical Properties of Multi-Spot-Welded Panels. J. Manuf. Mater. Process. 2020, 4, 55
    Abstract
    Refill friction stir spot welding (RFSSW) is an emerging technology for joining aerospace aluminum alloys. The aim of the study is to investigate the effects of the refill friction stir spot weld spacing and the edge margin on the mechanical properties of multi-spot-welded AA7075-T6 panels. AA7075-T6 is a baseline aerospace aluminum alloy used in aircraft structures. The study employs an innovative robotic RFSSW system that is designed and developed by Kawasaki Heavy Industries (KHI). The experimental strategy uses Design of Experiments (DoE) to characterize the failure loads of multi-spot-welded panels in terms of the spot weld spacing, edge margin, and heat-affected zone (HAZ) of the spot weld. The RFSSW process leaves behind a thermal “imprint” as HAZ in heat-treatable aluminum alloys. According to the DoE results, larger spot weld spacings with no HAZ overlap produce higher failure loads of multi-spot-welded panels. On the other hand, edge margins that are equal to or less than the spot weld diameter demonstrate abnormal plastic deformations, such as workpiece edge swelling and weld crown dents, during the RFSSW process. The larger edge margins do not demonstrate such abnormal deformations during the welding process.
    Description
    © 2020 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    URI
    https://doi.org/10.3390/JMMP4020055
    https://soar.wichita.edu/handle/10057/19543
    Collections
    • NIAR Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV