Effect of BMP-2 adherent to resorbable sutures on cartilage repair: A rat model of xyphoid process

Loading...
Thumbnail Image
Issue Date
2020-08-26
Embargo End Date
Authors
Drummond, Nathan
Bruner, Bradley W.
Heggeness, Michael H.
Dart, Bradley
Yang, Shang-You
Advisor
Citation

Drummond, N.; W. Bruner, B.; Heggeness, M.H.; Dart, B.; Yang, S.-Y. Effect of BMP-2 Adherent to Resorbable Sutures on Cartilage Repair: A Rat Model of Xyphoid Process. Materials 2020, 13, 3764

Abstract

Meniscal tears are often seen in orthopedic practice. The current strategy for meniscal repair has only had limited success with a relatively high incidence of re-operative rate. This study evaluates the therapeutic effects of Bone morphogenetic protein-2 (BMP-2) soaked sutures for cartilage repair, using a rat model of xyphoid healing. Vicryl-resorbable sutures were presoaked in BMP-2 solutions prior to animal experimentation. Rat xyphoid process (an avascular hyaline cartilage structure) was surgically ruptured followed by repair procedures with regular suture or with sutures that were pre-soaked in BMP-2 solutions. In vitro assessment indicated that presoaking the Vicryl-resorbable sutures with 10 μg/mL BMP-2 resulted in a sustained amount of the growth factor release up to 7 days. Histological analysis suggested that application of this BMP-2 soaked suture on the rat xyphoid process model significantly improved the avascular cartilage healing compared to non-soaked control sutures. In conclusion, data here confirm that the rat xyphoid process repair is a reproducible and inexpensive animal model for meniscus and other cartilage repair. More importantly, coating of BMP-2 on sutures appears a potential avenue to improve cartilage repair and regeneration. Further study is warranted to explore the molecular mechanisms of this strategy.

Table of Content
Description
© Authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
publication.page.dc.relation.uri
DOI