• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice

    View/Open
    Rathnayake_2020.pdf (1.174Mb)
    Date
    2020-08-19
    Author
    Rathnayake, Athri D.
    Zheng, Jian
    Kim, Yunjeong
    Perera, Krishani Dinali
    MacKin, Samantha R.
    Meyerholz, David K.
    Kashipathy, Maithri M.
    Battaile, Kevin P.
    Lovell, Scott
    Perlman, Stanley
    Groutas, William C.
    Chang, Kyeong-Ok
    Metadata
    Show full item record
    Citation
    Jian; Kim, Yunjeong; Perera, Krishani Dinali; MacKin, Samantha R.; Meyerholz, David K.; Kashipathy, Maithri M.; Battaile, Kevin P.; Lovell, Scott; Perlman, Stanley; Groutas, William C.; Chang, Kyeong-Ok. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice. Science translational medicine, vol. 12:no. 557
    Abstract
    Pathogenic coronaviruses are a major threat to global public health, as exemplified by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the newly emerged SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). We describe herein the structure-guided optimization of a series of inhibitors of the coronavirus 3C-like protease (3CLpro), an enzyme essential for viral replication. The optimized compounds were effective against several human coronaviruses including MERS-CoV, SARS-CoV, and SARS-CoV-2 in an enzyme assay and in cell-based assays using Huh-7 and Vero E6 cell lines. Two selected compounds showed antiviral effects against SARS-CoV-2 in cultured primary human airway epithelial cells. In a mouse model of MERS-CoV infection, administration of a lead compound 1 day after virus infection increased survival from 0 to 100% and reduced lung viral titers and lung histopathology. These results suggest that this series of compounds has the potential to be developed further as antiviral drugs against human coronaviruses.
    Description
    © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    URI
    https://doi.org/10.1126/scitranslmed.abc5332
    https://soar.wichita.edu/handle/10057/18979
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV