• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks

    Date
    2020-11
    Author
    Zhang, Nailong
    Si, Wujun
    Metadata
    Show full item record
    Citation
    Nailong Zhang, Wujun Si, 2020. Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks, Reliability Engineering & System Safety, vol. 203:art. no. 107094
    Abstract
    Condition-Based Maintenance (CBM) planning for multi-component systems has been receiving increasing attention in recent years. Most existing research on CBM assumes that preventive maintenances should be conducted when the degradations of system components reach specific threshold levels upon inspection. However, the search of optimal maintenance threshold levels is often efficient for low-dimensional CBM but becomes challenging if the number of components gets large, especially when those components are subject to complex dependencies. To overcome the challenge, in this paper we propose a novel and flexible CBM model based on a customized deep reinforcement learning for multi-component systems with dependent competing risks. Both stochastic and economic dependencies among the components are considered. Specifically, different from the threshold-based decision making paradigm used in traditional CBM, the proposed model directly maps the multi-component degradation measurements at each inspection epoch to the maintenance decision space with a cost minimization objective, and the leverage of deep reinforcement learning enables high computational efficiencies and thus makes the proposed model suitable for both low and high dimensional CBM. Various numerical studies are conducted for model validations.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    https://doi.org/10.1016/j.ress.2020.107094
    https://soar.wichita.edu/handle/10057/18678
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV