• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An integrated simulation-optimization framework to optimize search and treatment path for controlling a biological invader

    Date
    2019-10-01
    Author
    Onal, Sevilay
    Akhundov, Najmaddin
    Buyuktahtakin, Esra
    Smith, Jennifer
    Metadata
    Show full item record
    Citation
    Onal, Sevilay; Akhundov, Najmaddin; Büyüktahtakın, Esra; Smith, Jennifer. 2019. An integrated simulation-optimization framework to optimize search and treatment path for controlling a biological invader. International Journal of Production Economics, 1 October 2019, art. no. 107507
    Abstract
    Invasive species cause large economic losses and are difficult to control due to the high cost of locating and treating the continual emergence of new individuals. The national strategy against invasive species encompasses prevention, early detection, and rapid response. In particular, determining an optimal route for search and treatment under limited budget is critical to reducing management costs. In this paper, we present a new integrated simulation-optimization framework to effectively search and treat invasive species under a limited management budget. The simulation mimics invader growth over a landscape and 12 years, while a bio-economic optimization model finds an optimal search and treatment path to minimize its economic damage to agricultural production. Our optimization model is new in the sense that it prescribes the optimal path for searching and treating sites for controlling the invader. This study is also the first in the literature to present and combine simulation and optimization models of the complex bio-economic search-path problem, and to prescribe a pathway for search and treatment that is applicable to the real-world management of invasive species. Our case study data and parameter calibration are based on the large-scale field data on Sericea, an aggressive invasive plant threatening the Great Plains of the U.S., collected over twelve pastures in Kansas during the past two years. Solving simulation and optimization models in a consecutive fashion provides a considerable computational advantage to find an optimal solution to practical size problems in a reasonable time. Our results imply that applying yearly treatment with a slow search-and-treatment speed results in the biggest bang for the buck under most invasion scenarios.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    https://doi.org/10.1016/j.ijpe.2019.09.028
    http://hdl.handle.net/10057/16803
    Collections
    • BIO Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV