• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Laser ablation based on-orbit debris removal

    View/Open
    Thesis (2.108Mb)
    Date
    2019-07
    Author
    Karampudi, Prathyusha
    Advisor
    Dutta, Atri
    Metadata
    Show full item record
    Abstract
    Space debris are defunct man-made satellites orbiting in the low-earth orbit (LEO) and Geo-synchronous orbit (GEO) orbiting around earth with high velocities posing a serious threat for current and future missions. Controlling the growth of debris is of great importance for sustained space operations. This has led researchers to investigate a wide variety of active debris removal missions basing on their characteristics: contact less, contact, capturing and drag augmentation methods. This thesis discusses space debris removal using ground based lasers. The effect of laser ablation on de-orbiting process was investigated using Sims-Flanagan model, where change in momentum translates in gradual change in the debris trajectory. A 5 cm spherical shaped debris of mass 0.1 kg was modeled using a series of change in velocities ( Δv's) due to multiple laser engagements to achieve the target orbit of 120 km altitude. The translational dynamics of the debris was determined assuming laser propagation vector non-tangential to its surface under the influence of atmospheric drag. It was observed that the total de-orbit time decreases with the increase in laser coupling coefficient and decrease in laser pulse duration. The model estimated hours to reach the target perigee radius with laser engagement of each 30 seconds, for the coupling coefficient of 6 units, and the correspondingly seconds and engagements for the 6ns laser pulse duration. The model also observed that the atmospheric drag influenced the de-orbit time exponentially accelerating the process as it approaching the earth atmosphere.
    Description
    Thesis (M.S.)-- Wichita State University, College of Engineering, Dept. of Aerospace Engineering
    URI
    http://hdl.handle.net/10057/16551
    Collections
    • AE Theses and Dissertations
    • CE Theses and Dissertations
    • Master's Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV