• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Mathematics, Statistics, and Physics
    • MATH Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Mathematics, Statistics, and Physics
    • MATH Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Isotropic covariance matrix functions on compact two-point homogeneous spaces

    Date
    2019
    Author
    Lu, Tianshi
    Ma, Chunsheng
    Metadata
    Show full item record
    Citation
    Lu, T. & Ma, C. J Theor Probab (2019)
    Abstract
    The covariance matrix function is characterized in this paper for a Gaussian or elliptically contoured vector random field that is stationary, isotropic, and mean square continuous on the compact two-point homogeneous space. Necessary and sufficient conditions are derived for a symmetric and continuous matrix function to be an isotropic covariance matrix function on all compact two-point homogeneous spaces. It is also shown that, for a symmetric and continuous matrix function with compact support, if it makes an isotropic covariance matrix function in the Euclidean space, then it makes an isotropic covariance matrix function on the sphere or the real projective space.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    https://doi.org/10.1007/s10959-019-00920-1
    http://hdl.handle.net/10057/16437
    Collections
    • MATH Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV