Show simple item record

dc.contributor.authorSritharan, Ramanan
dc.contributor.authorTaklimi, Sean Reza
dc.contributor.authorGhazinezami, Ali
dc.contributor.authorAskari, Davood
dc.identifier.citationSritharan, Ramanan; Taklimi, Sean Reza; Ghazinezami, Ali; Askari, Davood. 2018. Mechanical properties improvement of polymeric nanocomposites reinforced with chemically treated helical carbon nanotubes: Influence of sonication time and molarities of nitric-sulfuric-hydrochloric acids. 5th Annual Composites and Advanced Materials Expo, CAMX 2018, Paper TP18-0378en_US
dc.descriptionClick on the URI to access the article (may not be free).en_US
dc.description.abstractPolymer-based composites are widely used for structural applications, predominantly in the aerospace and renewable energy industries. One of the main disadvantages is their failure/delamination due to interlaminar strength or out-of-plane strength, which is mainly due to lack of reinforcement in the transverse direction or thickness direction. One of the recent solutions that can effectively address this problem is the use of nanomaterials, such as Carbon Nanotubes (CNTs), as an additional nanoscale reinforcement in the resin system. Most previous studies have used straight CNTs in as-is or functionalized forms. Because CNTs are inert in nature, it is desired to covalently functionalize them, before incorporating them into polymer resins. CNTs can be functionalized using different chemicals, which will improve their interaction with the polymer molecules and enhances their dispersion homogeneity. In addition to functionalization, we believe that geometrical configuration of CNTs do also play an important role in their effectiveness, when they are used as nanoscale reinforcement in polymer resins. Overall, there are several factors that can effectively influence the properties of CNTs reinforced nanocomposites, e.g., CNTs geometry, weight percent inclusion, functionalization method, and processing parameters. In this research, helical carbon nanotubes (HCNTs) were functionalized using a mixture of nitric, sulfuric, and hydrochloric acids following 8 different procedures (i.e., sonicating with acid molarities of 3 and 8 M for 1.5hr, 3hr, 4.5hr, and 6hr). Next, the functionalized HCNTs (FHCNTs) were incorporated into epoxy resin using 3 different weight percentages (i.e., 0.02, 0.04, and 0.06 wt%) and then used to fabricate nanocomposite panels for mechanical testing. The main objective of this research was to investigate the effects of chemical functionalization processes and weight percentages of HCNTs on tensile strength, fracture toughness, Young's modulus, and strain-to-failure of the polymeric nanocomposites. Based on the test results, the most effective chemical functionalization processes were identified and recommended for structural nanocomposite applications.en_US
dc.description.sponsorshipCollege of engineering of the Wichita State University.en_US
dc.publisherComposites and Advanced Materials Expo (CAMX)en_US
dc.relation.ispartofseries5th Annual Composites and Advanced Materials Expo, CAMX 2018;
dc.subjectElastic modulien_US
dc.subjectEpoxy resinsen_US
dc.subjectFighter aircraften_US
dc.subjectFracture toughnessen_US
dc.subjectHydrochloric aciden_US
dc.subjectMechanical propertiesen_US
dc.subjectMechanical testingen_US
dc.subjectMolar concentrationen_US
dc.subjectReinforced plasticsen_US
dc.subjectTensile strengthen_US
dc.titleMechanical properties improvement of polymeric nanocomposites reinforced with chemically treated helical carbon nanotubes: Influence of sonication time and molarities of nitric-sulfuric-hydrochloric acidsen_US
dc.typeConference paperen_US
dc.rights.holder© 2018. Used by CAMX The Composites and Advanced Materials Expo. CAMX Conference Proceedings. Dallas, TX.en_US

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record