• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mechanical properties improvement of polymeric nanocomposites reinforced with chemically treated helical carbon nanotubes: Influence of sonication time and molarities of nitric-sulfuric-hydrochloric acids

    Date
    2018-10
    Author
    Sritharan, Ramanan
    Taklimi, Sean Reza
    Ghazinezami, Ali
    Askari, Davood
    Metadata
    Show full item record
    Citation
    Sritharan, Ramanan; Taklimi, Sean Reza; Ghazinezami, Ali; Askari, Davood. 2018. Mechanical properties improvement of polymeric nanocomposites reinforced with chemically treated helical carbon nanotubes: Influence of sonication time and molarities of nitric-sulfuric-hydrochloric acids. 5th Annual Composites and Advanced Materials Expo, CAMX 2018, Paper TP18-0378
    Abstract
    Polymer-based composites are widely used for structural applications, predominantly in the aerospace and renewable energy industries. One of the main disadvantages is their failure/delamination due to interlaminar strength or out-of-plane strength, which is mainly due to lack of reinforcement in the transverse direction or thickness direction. One of the recent solutions that can effectively address this problem is the use of nanomaterials, such as Carbon Nanotubes (CNTs), as an additional nanoscale reinforcement in the resin system. Most previous studies have used straight CNTs in as-is or functionalized forms. Because CNTs are inert in nature, it is desired to covalently functionalize them, before incorporating them into polymer resins. CNTs can be functionalized using different chemicals, which will improve their interaction with the polymer molecules and enhances their dispersion homogeneity. In addition to functionalization, we believe that geometrical configuration of CNTs do also play an important role in their effectiveness, when they are used as nanoscale reinforcement in polymer resins. Overall, there are several factors that can effectively influence the properties of CNTs reinforced nanocomposites, e.g., CNTs geometry, weight percent inclusion, functionalization method, and processing parameters. In this research, helical carbon nanotubes (HCNTs) were functionalized using a mixture of nitric, sulfuric, and hydrochloric acids following 8 different procedures (i.e., sonicating with acid molarities of 3 and 8 M for 1.5hr, 3hr, 4.5hr, and 6hr). Next, the functionalized HCNTs (FHCNTs) were incorporated into epoxy resin using 3 different weight percentages (i.e., 0.02, 0.04, and 0.06 wt%) and then used to fabricate nanocomposite panels for mechanical testing. The main objective of this research was to investigate the effects of chemical functionalization processes and weight percentages of HCNTs on tensile strength, fracture toughness, Young's modulus, and strain-to-failure of the polymeric nanocomposites. Based on the test results, the most effective chemical functionalization processes were identified and recommended for structural nanocomposite applications.
    Description
    Click on the URI to access the article (may not be free).
    URI
    https://www.researchgate.net/publication/329541533_Mechanical_Properties_Improvement_of_Polymeric_Nanocomposites_Reinforced_with_Chemically_Treated_Helical_Carbon_Nanotubes_Influence_of_Sonication_Time_and_Molarities_of_Nitric-Sulfuric-Hydrochloric_Ac
    https://www.nasampe.org/store/ViewProduct.aspx?id=12568719
    http://hdl.handle.net/10057/16337
    Collections
    • ME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV