• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Foolproofing network communication by k-diverse padding

    View/Open
    Thesis (1.712Mb)
    Date
    2018-12
    Author
    Chandrashekar, Kavitha
    Advisor
    Bagai, Rajiv
    Metadata
    Show full item record
    Abstract
    It has been shown recently that a large majority of online web-based applications are prone to privacy attacks, causing serious breach in the privacy of any online activity, due to the popular application features that generate network traffic patterns. Features like auto-completion and auto-suggestion inadvertently reveal underlying user actions with unique packet bursts that, despite being fully encrypted, enable an eavesdropper to determine all user activity on a web-application. Well-known techniques for achieving data privacy, such as k-anonymity and l-diversity, can be adapted in this context of web applications to achieve desired levels of privacy by padding packets with dummy bytes, aimed at obfuscating any eavesdropper by blending different user actions with each other. In this work, we achieve a high level of privacy by a novel technique that blends publicly observable network bursts of carefully chosen probabilistic portions of user actions. This technique in fact results in the maximum possible level of l-diversity, i.e. k-diversity, and in that respect is a significant improvement over all existing techniques.
    Description
    Thesis (M.S.)-- Wichita State University, College of Engineering, Dept. of Electrical Engineering and Computer Science
    URI
    http://hdl.handle.net/10057/15918
    Collections
    • CE Theses and Dissertations
    • EECS Theses and Dissertations
    • Master's Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV