• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal orbit-raising and attitude control of all-electric satellites

    View/Open
    Dissertation (4.480Mb)
    Date
    2018-12
    Author
    Sreesawet, Suwat
    Advisor
    Dutta, Atri
    Metadata
    Show full item record
    Abstract
    Electric propulsion is gaining popularity among satellite operators due to its fuel e ciency. However, electric propulsion has the limitation of producing a small magnitude of thrust, meaning that the transfer time to geostationary orbit is of the order of several months. The long transfer time adds more complexity to the mission design process due to the long exposure to hazardous radiation belts. Obviously, thrusters require electric power that is generated from sunlight by satellite solar panels. Therefore, the earth's shadow signi cantly impacts the orbit-raising maneuver. This study proposes a novel, robust, and fast numerical methodology for generating low-thrust trajectories to the geosynchronous orbit. This methodology utilizes a new set of state variables that has a physical interpretation and exhibits slow variation under a small magnitude of thrust. The absence of mathematical singularities in the equatorial plane adds to the bene ts. The new set of state variables, along with a closed-loop guidance scheme and direct optimization methodology, is used to optimize the satellite trajectory. An unconstrained optimization scheme is able to robustly and rapidly generate low-thrust orbit-raising trajectories for a variety of mission scenarios, various initial orbits, application of electric battery to allow thrusting during eclipses, and orbital perturbations due to the earth's oblateness or a third body. The proposed methodology can be seamlessly integrated into receding horizon control scheme, which recomputes the minimum time trajectory at regular intervals referred to as planning horizon. The attitude of spacecraft must also be maintained in a desired direction which can be time-varying. Regular satellites perform orbit-raising using stowed solar array. In contrast, all-electric satellites perform orbit-raising using deployed solar arrays. Therefore, simple inverse controllers for attitude control with a neural network-based observer has been studied and evaluated. We demonstrate that the performance of the inverse controller is drastically improved with the proposed observer.
    Description
    Thesis (Ph.D.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering
    URI
    http://hdl.handle.net/10057/15912
    Collections
    • AE Theses and Dissertations
    • CE Theses and Dissertations
    • Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV