• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Aerospace Engineering
    • AE Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Aerospace Engineering
    • AE Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Strain energy release rate determination of prescribed cracks in adhesively-bonded single-lap composite joints with thick bondlines

    Date
    2008-07
    Author
    Yang, Chihdar Charles
    Chadegani, Alireza
    Tomblin, John S.
    Metadata
    Show full item record
    Citation
    Yang, C., Chadegani, A., & Tomblin, J. S. (2008). Strain energy release rate determination of prescribed cracks in adhesively-bonded single-lap composite joints with thick bondlines. Composites Part B: Engineering, 39(5), 863-873. doi:10.1016/j.compositesb.2007.10.001
    Abstract
    An analytical model for determining the strain energy release rate due to a prescribed crack in an adhesively-bonded, single-lap composite joint with thick bondlines and subjected to axial tension is presented. An existing analytical model for determining the adhesive stresses within the joint is used as the foundation for the strain energy release rate calculation. In the stress model, the governing equations of displacements within the adherends are formulated using the first-order laminated plate theory. In order to simulate the thick bondlines, the field equations of the adhesive are formulated using the linear elastic theory to allow non-uniform stress distributions through the thickness. Based on the adhesive stress distributions, the equivalent crack tip forces are obtained and the strain energy release rate due to the crack extension is determined by using the virtual crack closure technique (VCCT). The specimen geometry of ASTM D3165 standard test is followed in the derivation. The system of second-order differential equations is solved to provide the adherend and adhesive stresses using the symbolic computational tool, Maple 7. Finite element analyses using J-integral as well as VCCT are performed to verify the developed analytical model. Finite element analyses are conducted using the commercial finite element analysis software ABAQUS. The strain energy release rates determined using the analytical method correlate well with the results from the finite element analyses. It can be seen that the same prescribed crack has a higher strain energy release rate for the joints with thicker bondlines. This explains the reason that joints with thick bondlines tend to have a lower load carrying capacity.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1016/j.compositesb.2007.10.001
    http://hdl.handle.net/10057/15864
    Collections
    • AE Research Publications
    • Chihdar Charles Yang

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV