• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic thermal softening behavior of additive materials for hybrid manufacturing

    Date
    2018
    Author
    Mates, Steven P.
    Stoudt, Mark R.
    Jacob, Gregor
    Moscoso-Kingsley, Wilfredo
    Madhavan, Viswanathan
    Metadata
    Show full item record
    Citation
    Mates S., Stoudt M., Jacob G., Moscoso W., Madhavan V. (2019) Dynamic Thermal Softening Behavior of Additive Materials for Hybrid Manufacturing. In: Kramer S., Jordan J., Jin H., Carroll J., Beese A. (eds) Mechanics of Additive and Advanced Manufacturing, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham
    Abstract
    Hybrid manufacturing involves both additive and subtractive (machining) processes to achieve the final product. Substantial differences can exist between the mechanical behavior of additively as-built materials compared to their wrought counterparts. As such, the use of wrought material properties for the simulation and optimization of the machining step in a hybrid manufacturing process may produce inaccurate results. The present work uses the NIST pulse-heated compression Kolsky bar to measure the dynamic behavior of both wrought and additively produced Inconel 625 and 17-4 PH stainless steel over a range of temperatures up to 1000 °C and at strain rates of 3000 s −1 . The measurement results are correlated to underlying microstructural differences between additive and wrought materials that arise because of the differences between these material processing routes as described in the literature.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    https://doi.org/10.1007/978-3-319-95083-9_7
    http://hdl.handle.net/10057/15829
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV