dc.contributor.author | Khanfer, Ammar | |
dc.contributor.author | Bukhgeim, Alexander L. | |
dc.date.accessioned | 2019-02-15T18:23:42Z | |
dc.date.available | 2019-02-15T18:23:42Z | |
dc.date.issued | 2019-01-20 | |
dc.identifier.citation | Khanfer, A. & Bukhgeim, A. (2019). Inverse problem for one-dimensional wave equation with matrix potential. Journal of Inverse and Ill-posed Problems, 0(0), pp. | en_US |
dc.identifier.issn | 0928-0219 | |
dc.identifier.uri | https://doi.org/10.1515/jiip-2018-0053 | |
dc.identifier.uri | http://hdl.handle.net/10057/15813 | |
dc.description | Click on the DOI link to access the article (may not be free). | en_US |
dc.description.abstract | We prove a global uniqueness theorem of reconstruction of a matrix-potential a (x, t) {a(x,t)} of one-dimensional wave equation □ u + a u = 0 {\square u+au=0}, x > 0, t > 0 {x>0,t>0}, □ = t 2 - x 2 {\square=\partial-{t}^{2}-\partial-{x}^{2}} with zero Cauchy data for t = 0 {t=0} and given Cauchy data for x = 0 {x=0}, u (0, t) = 0 {u(0,t)=0}, u x (0, t) = g (t) {u-{x}(0,t)=g(t)}. Here u, a, f {u,a,f}, and g are n × n {n\times n} smooth real matrices, det (f (0)) 0 {\det(f(0))\neq 0}, and the matrix t a {\partial-{t}a} is known. | en_US |
dc.description.sponsorship | Deanship of Academic Research at Al-Imam Mohammad Ibn Saud Islamic University (project no. 361204) in Saudi Arabia. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | De Gruyter | en_US |
dc.relation.ispartofseries | Journal of Inverse and Ill-posed Problems;2019 | |
dc.subject | Carleman estimate | en_US |
dc.subject | Inverse problem | en_US |
dc.subject | Potential | en_US |
dc.subject | Wave operator | en_US |
dc.title | Inverse problem for one-dimensional wave equation with matrix potential | en_US |
dc.type | Article | en_US |
dc.rights.holder | © 2019 Walter de Gruyter GmbH, Berlin/Boston. | en_US |