Show simple item record

dc.contributor.authorKhanfer, Ammar
dc.contributor.authorBukhgeim, Alexander L.
dc.identifier.citationKhanfer, A. & Bukhgeim, A. (2019). Inverse problem for one-dimensional wave equation with matrix potential. Journal of Inverse and Ill-posed Problems, 0(0), pp.en_US
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractWe prove a global uniqueness theorem of reconstruction of a matrix-potential a (x, t) {a(x,t)} of one-dimensional wave equation □ u + a u = 0 {\square u+au=0}, x > 0, t > 0 {x>0,t>0}, □ = t 2 - x 2 {\square=\partial-{t}^{2}-\partial-{x}^{2}} with zero Cauchy data for t = 0 {t=0} and given Cauchy data for x = 0 {x=0}, u (0, t) = 0 {u(0,t)=0}, u x (0, t) = g (t) {u-{x}(0,t)=g(t)}. Here u, a, f {u,a,f}, and g are n × n {n\times n} smooth real matrices, det (f (0)) 0 {\det(f(0))\neq 0}, and the matrix t a {\partial-{t}a} is known.en_US
dc.description.sponsorshipDeanship of Academic Research at Al-Imam Mohammad Ibn Saud Islamic University (project no. 361204) in Saudi Arabia.en_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofseriesJournal of Inverse and Ill-posed Problems;2019
dc.subjectCarleman estimateen_US
dc.subjectInverse problemen_US
dc.subjectWave operatoren_US
dc.titleInverse problem for one-dimensional wave equation with matrix potentialen_US
dc.rights.holder© 2019 Walter de Gruyter GmbH, Berlin/Boston.en_US

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record