Show simple item record

dc.contributor.authorEscher, Christine
dc.contributor.authorSearle, Catherine
dc.date.accessioned2019-02-08T03:24:59Z
dc.date.available2019-02-08T03:24:59Z
dc.date.issued2019-01
dc.identifier.citationEscher, C. & Searle, C. J Geom Anal (2019) 29: 1002en_US
dc.identifier.issn1050-6926
dc.identifier.otherWOS:000455313700040
dc.identifier.urihttps://doi.org/10.1007/s12220-018-0026-2
dc.identifier.urihttp://hdl.handle.net/10057/15792
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractWe classify closed, simply connected, non-negatively curved 6-manifolds of almost maximal symmetry rank up to equivariant diffeomorphism.en_US
dc.description.sponsorshipNational Science Foundation under Grant No. DMS-1440140 while both authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2016 semester. Catherine Searle would also like to acknowledge support by Grants from the National Science Foundation (#DMS-1611780), as well as from the Simons Foundation (#355508, C. Searle).en_US
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofseriesJournal of Geometric Analysis;v.29:no.1
dc.subjectAlmost maximal symmetry ranken_US
dc.subjectEquivariant diffeomorphismen_US
dc.subject6-Manifoldsen_US
dc.subjectNon-negative curvatureen_US
dc.titleNon-negatively curved 6-manifolds with almost maximal symmetry ranken_US
dc.typeArticleen_US
dc.rights.holder© 2018, Mathematica Josephina, Inc.en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record