• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Biomedical Engineering
    • BioMed Engineering Research
    • BIOMED Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Biomedical Engineering
    • BioMed Engineering Research
    • BIOMED Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ultrahigh conductivity and superior interfacial adhesion of a nanostructured, photonic-sintered copper membrane for printed flexible hybrid electronics

    View/Open
    LeeY_2018.pdf (4.238Mb)
    Date
    2018-11-19
    Author
    Kwon, Young-Tae
    Kim, Yun-Soung
    Lee, Yongkuk
    Kwon, Shinjae
    Lim, Minseob
    Song, Yoseb
    Choa, Yong-Ho
    Yeo, Woon-Hong
    Metadata
    Show full item record
    Citation
    Young-Tae Kwon, Yun-Soung Kim, Yongkuk Lee, Shinjae Kwon, Minseob Lim, Yoseb Song, Yong-Ho Choa, and Woon-Hong Yeo Ultrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics ACS Applied Materials & Interfaces 2018 10 (50)
    Abstract
    Inkjet-printed electronics using metal particles typically lack electrical conductivity and interfacial adhesion with an underlying substrate. To address the inherent issues of printed materials, this Research Article introduces advanced materials and processing methodologies. Enhanced adhesion of the inkjet-printed copper (Cu) on a flexible polyimide film is achieved by using a new surface modification technique, a nanostructured self-assembled monolayer (SAM) of (3-mercaptopropyl)trimethoxysilane. A standardized adhesion test reveals the superior adhesion strength (1192.27 N/m) of printed Cu on the polymer film, while maintaining extreme mechanical flexibility proven by 100 000 bending cycles. In addition to the increased adhesion, the nanostructured SAM treatment on printed Cu prevents formation of native oxide layers. The combination of the newly synthesized Cu ink and associated sintering technique with an intense pulsed ultraviolet and visible light absorption enables ultrahigh conductivity of printed Cu (2.3 X 10(-6) Omega.cm), which is the highest electrical conductivity reported to date. The comprehensive materials engineering technologies offer highly reliable printing of Cu patterns for immediate use in wearable flexible hybrid electronics. In vivo demonstration of printed, skin-conformal Cu electrodes indicates a very low skin-electrode impedance (<50 k Omega) without a conductive gel and successfully measures three types of biopotentials, including electrocardiograms, electromyograms, and electrooculograms.
    Description
    © Author. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
    URI
    https://doi.org/10.1021/acsami.8b17164
    http://hdl.handle.net/10057/15759
    Collections
    • BIOMED Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV