• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time control of cyber-physical manufacturing process under uncertainty

    Date
    2018-06
    Author
    Nannapaneni, Saideep
    Mahadevan, Sankaran
    Dubey, Abhishek
    Metadata
    Show full item record
    Citation
    Nannapaneni S, Mahadevan S, Dubey A. Real-Time Control of Cyber-Physical Manufacturing Process Under Uncertainty. ASME. International Manufacturing Science and Engineering Conference, Volume 3: Manufacturing Equipment and Systems ():V003T02A001. doi:10.1115/MSEC2018-6460
    Abstract
    Modern manufacturing processes are increasing becoming cyber-physical in nature, where a computational system monitors the system performance, provides real-time process control by analyzing sensor data collected regarding process and product characteristics, in order to increase the quality of the manufactured product. Such real-time process monitoring and control techniques are useful in precision and ultra-precision machining processes. However, the output product quality is affected by several uncertainty sources in various stages of the manufacturing process such as the sensor uncertainty, computational system uncertainty, control input uncertainty, and the variability in the manufacturing process. The computational system may be a single computing node or a distributed computing network; the latter scenario introduces additional uncertainty due to the communication between several computing nodes. Due to the continuous monitoring process, these uncertainty sources aggregate and compound over time, resulting in variations of product quality. Therefore, characterization of the various uncertainty sources and their impact on the product quality are necessary to increase the efficiency and productivity of the overall manufacturing process. To this end, this paper develops a two-level dynamic Bayesian network methodology, where the higher level captures the uncertainty in the sensors, control inputs, and the manufacturing process while the lower level captures the uncertainty in the communication between several computing nodes. In addition, we illustrate the use of a variance-based global sensitivity analysis approach for dimension reduction in a high-dimensional manufacturing process, in order to enable real-time analysis for process control. The proposed methodologies of process control under uncertainty and dimension reduction are illustrated for a cyber-physical turning process.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    https://doi.org/10.1115/MSEC2018-6460
    http://hdl.handle.net/10057/15705
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV