• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Material degradation modeling and failure prediction using microstructure images

    Date
    2018-11-05
    Author
    Si, Wujun
    Yang, Qingyu
    Wu, Xin
    Metadata
    Show full item record
    Citation
    Wujun Si, Qingyu Yang & Xin Wu (2018) Material Degradation Modeling and Failure Prediction Using Microstructure Images, Technometrics
    Abstract
    Degradation data, frequently along with low-dimensional covariate information such as scalar-type covariates, are widely used for asset reliability analysis. Recently, many high-dimensional covariates such as functional and image covariates have emerged with advances in sensor technology, containing richer information that can be used for degradation assessment. In this article, motivated by a physical effect that microstructures of dual-phase advanced high strength steel strongly influence steel degradation, we propose a two-stage material degradation model using the material microstructure image as a covariate. In Stage 1, we show that the microstructure image covariate can be reduced to a functional covariate while statistical properties of the image are preserved up to the second order. In Stage 2, a novel functional covariate degradation model is proposed, based on which the time-to-failure distribution in terms of degradation level passages is derived. A penalized least squares estimation method is developed to obtain the closed-form point estimator of model parameters. Analytical inferences on interval estimation of the model parameters, the mean degradation levels, and the distribution of the time-to-failure are also developed. Simulation studies are implemented to validate the developed methods. Physical experiments on dual-phase advanced high strength steel are designed and conducted to demonstrate the proposed model. The results show that a significant improvement is achieved for material failure prediction by using material microstructure images compared with multiple benchmark models.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    https://doi.org/10.1080/00401706.2018.1514327
    http://hdl.handle.net/10057/15669
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV