• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A multi-criteria ranking algorithm (MCRA) for determining breast cancer therapy

    Date
    2019-01
    Author
    Hasan, Mostafa
    Buyuktahtakin, Esra
    Elamin, Elshami
    Metadata
    Show full item record
    Citation
    Hasan, Mostafa; Buyuktahtakin, Esra; Elamin, Elshami. 2019. A multi-criteria ranking algorithm (MCRA) for determining breast cancer therapy. Omega, vol. 82:pp 83-101
    Abstract
    Breast cancer is the leading cause of cancer deaths among women. The selection of an effective, patient specific treatment plan for breast cancer has been a challenge for physicians because the decision process involves a vast number of treatment alternatives as well as treatment decision criteria, such as the stage of the cancer (e.g., in situ, invasive, metastasis), tumor characteristics, biomarker-related risks, and patient-related risks. Furthermore, every patient's case is unique, requiring a patient-specific treatment plan, while there is no standard procedure even for a particular stage of the breast cancer. In this paper, we first determine a comprehensive set of criteria for selecting the best breast cancer therapy by interviewing medical oncologists and reviewing the literature. We then present two analytical hierarchy process (AHP) models for quantifying the weights of criteria for breast cancer treatment in two sequential steps: primary and secondary treatment therapy. Using the weights of criteria from the AHP model, we propose a new multi-criteria ranking algorithm (MCRA), which evaluates a large variety of patient scenarios and provides the best patient-tailored breast cancer treatment alternatives based on the input of nine medical oncologists. We then validate the predictions of the multi-criteria ranking algorithm by comparing treatment ranks of the algorithm with ranks of five different oncologists, and show that algorithm rankings match or are statistically significantly correlated with the overall expert ranking in most cases. Our multi-criteria ranking algorithm could be used as an accessible decision-support tool to aid oncologists and educate patients for determining appropriate and effective treatment alternatives for breast cancer. Our approach is also general in the sense that it could be adapted to solve other complex decision-making problems in medicine, healthcare, as well as other service and manufacturing industries.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    https://doi.org/10.1016/j.omega.2017.12.005
    http://hdl.handle.net/10057/15654
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV