• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimizing chemoradiotherapy to target metastatic disease and tumor growth

    Date
    2018-04-05
    Author
    Badri, Hamidreza
    Salari, Ehsan
    Watanabe, Yoichi
    Leder, Kevin
    Metadata
    Show full item record
    Citation
    Badri, Hamidreza; Salari, Ehsan; Watanabe, Yoichi; Leder, Kevin. 2018. Optimizing chemoradiotherapy to target metastatic disease and tumor growth. INFORMS Journal on Computing, vol. 30:no. 2:pp 259-277
    Abstract
    The majority of cancer-related fatalities are due to metastatic disease. Chemotherapeutic agents are administered along with radiation in chemoradiotherapy (CRT) to control the primary tumor and systemic disease such as metastasis. This work introduces a mathematical model of CRT treatment scheduling to obtain optimal drug and radiation protocols with the objective of minimizing metastatic cancer cell populations at multiple potential sites while maintaining a desired level of control on the primary tumor. Dynamic programming framework is used to determine the optimal radiotherapy fractionation regimen and the drug administration schedule. We design efficient DP data structures and use structural properties of the optimal solution to reduce the complexity of the resulting DP algorithm. We derive closed-form expressions for optimal chemotherapy schedules in special cases. The results suggest that if there is only an additive and spatial cooperation between the chemotherapeutic drug and radiation with no interaction between them, then radiation and drug administration schedules can be decoupled. In that case, regardless of the chemo- and radio sensitivity parameters, the optimal radiotherapy schedule follows a hypofractionated scheme. However, the structure of the optimal chemotherapy schedule depends on model parameters such as chemotherapy-induced cell kill at primary and metastatic sites, as well as the ability of primary tumor cells to initiate successful metastasis at different body sites. In contrast, an interactive cooperation between the drug and radiation leads to optimal split-course concurrent CRT regimens. Additionally, under dynamic radio sensitivity parameters due to the reoxygenation effect during therapy, we observe that it is optimal to immediately start the chemotherapy and administer a few large radiation fractions at the beginning of the therapy, while scheduling smaller fractions in later sessions. We quantify the trade-off between the new and traditional objectives of minimizing the metastatic population size and maximizing the primary tumor control probability, respectively, for a cervical cancer case. The trade-off information indicates the potential for significant reduction in the metastatic population with minimal loss in the primary tumor control.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    https://doi.org/10.1287/ijoc.2017.0778
    http://hdl.handle.net/10057/15435
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV