Show simple item record

dc.contributor.authorPatil, Sachin
dc.contributor.authorTay, Yi Yang
dc.contributor.authorBaratzadeh, Farzad
dc.contributor.authorLankarani, Hamid M.
dc.date.accessioned2018-07-09T14:52:57Z
dc.date.available2018-07-09T14:52:57Z
dc.date.issued2018-06
dc.identifier.citationPatil, S., Tay, Y.Y., Baratzadeh, F. et al. J Mech Sci Technol (2018) 32: 2569en_US
dc.identifier.issn1738-494X
dc.identifier.otherWOS:000435920100014
dc.identifier.urihttp://dx.doi.org/10.1007/s12206-018-0514-0
dc.identifier.urihttp://hdl.handle.net/10057/15366
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractThe demand for better structural performance in joining of components for road vehicles prompts the implementation of aluminum alloy friction stir welding technology in the automotive industry. The aim of current study is the creation of a 3-D finite element (FE) friction thermal model and stir welding (FSW) process of dissimilar aluminum alloy and for the estimation of crash worthiness performance of FSW fabricated shock absorber assembly. Thermo mechanical simulations and analysis are performed to understand the thermal behavior in the FSW weld zones. The developed models are correlated against published experimental results in terms of temperature profile of the weld zone. The developed models are then implemented for fabricating vehicle bumper parts to illustrate the performance of FSW welded components during an impact. Customary sled testing for low-speed guard necessities is performed utilizing a grating blend welded test apparatus at Wichita State University (WSU) at the National Institute for Aviation Research (NIAR). A few guard congregations are then appended to the test installation utilizing FSW and conventional Gas bend GMAW welding strategies. Numerical models are likewise created where limited component investigation is utilized to contrast the anticipated harm and the real harm maintained by both of the FSW and GMAW manufactured guards. During the research, a new FSW weld mold is created that allows for a better representation of the desired progressive crack propagation. The FSW fabricated bumper based on the Johnson-Cook failure model yields better failure prediction and is in good agreement to the test. The results from this study provide a guideline for an accurate finite element modeling of a FSW fabricated components and their application in the crashworthiness of such structural components.en_US
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofseriesJournal of Mechanical Science and Technology;v.32:no.6
dc.subjectFriction stir butt weldingen_US
dc.subjectThermal modelingen_US
dc.subjectJohnson-cook failure modelen_US
dc.subjectSled testen_US
dc.subjectVehicle bumper assemblyen_US
dc.titleModeling of friction-stir butt-welds and its application in automotive bumper impact performance Part 1. Thermo-mechanical weld process modelingen_US
dc.typeArticleen_US
dc.rights.holder© 2018, The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Natureen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record