• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Entropy connects water structure and dynamics in protein hydration layer

    Date
    2018-07-03
    Author
    Dahanayake, Jayangika Niroshani
    Mitchell-Koch, Katie R.
    Metadata
    Show full item record
    Citation
    Dahanayake, Jayangika Niroshani; Mitchell-Koch, Katie R. 2018. Entropy connects water structure and dynamics in protein hydration layer. Physical Chemistry Chemical Physics. vol. 20:no. 21:pp14765-14777
    Abstract
    The enzyme Candida Antarctica lipase B (CALB) serves here as a model for understanding connections among hydration layer dynamics, solvation shell structure, and protein surface structure. The structure and dynamics of water molecules in the hydration layer were characterized for regions of the CALB surface, divided around each -helix, -sheet, and loop structure. Heterogeneous hydration dynamics were observed around the surface of the enzyme, in line with spectroscopic observations of other proteins. Regional differences in the structure of the biomolecular hydration layer were found to be concomitant with variations in dynamics. In particular, it was seen that regions of higher density exhibit faster water dynamics. This is analogous to the behavior of bulk water, where dynamics (diffusion coefficients) are connected to water structure (density and tetrahedrality) by excess (or pair) entropy, detailed in the Rosenfeld scaling relationship. Additionally, effects of protein surface topology and hydrophobicity on water structure and dynamics were evaluated using multiregression analysis, showing that topology has a somewhat larger effect on hydration layer structure-dynamics. Concave and hydrophobic protein surfaces favor a less dense and more tetrahedral solvation layer, akin to a more ice-like structure, with slower dynamics. Results show that pairwise entropies of local hydration layers, calculated from regional radial distribution functions, scale logarithmically with local hydration dynamics. Thus, the Rosenfeld relationship describes the heterogeneous structure-dynamics of the hydration layer around the enzyme CALB. These findings raise the question of whether this may be a general principle for understanding the structure-dynamics of biomolecular solvation.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1039/c8cp01674g
    http://hdl.handle.net/10057/15363
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV