• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adsorption and capillary transition-controlled thermal diodes and switches using heterogeneous nanostructures

    View/Open
    Dissertation (2.693Mb)
    Date
    2017-12
    Author
    Avanessian, Tadeh
    Advisor
    Hwang, Gisuk
    Metadata
    Show full item record
    Abstract
    Thermal diodes and switches are systems that enable us to control thermal transport, preferentially in one direction, and switch "on"/"off" on demand. The main challenges of existing thermal diodes and switches are poor steady-state performance, limited operation conditions, slow transient response, and/or extremely difficult manufacturing. In this study, adsorption-controlled and capillary-controlled thermal diodes and switches are examined by employing argon gas-filled heterogeneous nanostructures using molecular simulations. For the adsorption-controlled mechanism, asymmetric adsorption onto the heterogeneous nanogap with respect to the different temperature gradient direction results in the asymmetric gas pressure and thermal accommodation coefficients (TACs), giving a maximum degree of diode, Rmax ~ 7. For a thermal switch, Ar-filled nanogaps with two heterogeneous surfaces are designed to demonstrate a fast thermal switch mechanism without having extra mechanical controlling system with the maximum degree of thermal switch, Smax ~ 13. In order to achieve higher magnitudes of R and S, the adsorption and capillary transition on the heterogeneous nanostructures are elucidated using Ar-filled Pt-based nanogaps with one surface having nanoposts using Grand Canonical Monte Carlo Simulation (GCMC). The study shows that the nanoposts decrease capillary transition pressure at given temperature (or increase temperature at given pressure). The large thermal conductivity contrast between the controlled adsorption and capillary states using the structural and/or material heterogeneity is shown to allow for Rmax ~ 140 in a demonstrated thermal diode with operating temperatures -40 K < ?T < +40 K. It also leads to a new nanoscale thermal switch mechanism providing Smax ~ 45 and ~ 170 for ?T = 10 K and 60 K, respectively, for a nanogap size of 5 nm. These results provide new insights into the design of advanced thermal management systems such as thermal transistors, thermal logic gates, and computers.
    Description
    Thesis (Ph.D.)-- Wichita State University, College of Engineering, Dept. of Mechanical Engineering
    URI
    http://hdl.handle.net/10057/15286
    Collections
    • CE Theses and Dissertations
    • Dissertations
    • ME Theses and Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV