• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating the effects of sodium chloride particles on thermoelectric properties of bismuth telluride

    Date
    2017
    Author
    Alexander, Tyler
    Rahman, Muhammad M.
    Asmatulu, Ramazan
    Metadata
    Show full item record
    Citation
    Alexander TT, Rahman MM, Asmatulu RR. Investigating the Effects of Sodium Chloride Particles on Thermoelectric Properties of Bismuth Telluride. ASME. ASME International Mechanical Engineering Congress and Exposition, Volume 6: Energy ():V006T08A030
    Abstract
    Cylindrical pellets of near stoichiometric bismuth telluride (Bi2Te3) powder with NaCl particles were made using a cold pressing and pressureless sintering technique. The sodium chloride was leached out from the samples in hot water, resulting in porous samples with varying levels of porosity. The electrical conductivity, Seebeck coefficient, and thermal conductivity were measured at room temperature using a testing apparatus designed and built by the researcher, both before and after the leaching of sodium chloride. From this data, the figure of merit was calculated. Samples of pure bismuth telluride (0% NaCl) served as the baseline samples for comparison. Both the presence of NaCl and pores were efficient at increasing the dimensionless figure of merit. Porous samples initially containing 20% NaCl had a 37.55% higher figure of merit compared to baseline samples, and an 89.07% increase in the figure of merit was seen from the solid samples with NaCl inclusions at a concentration of 30% by volume. The electrical conductivity was negatively affected by both inclusions and porosity, but significant increases in Seebeck coefficient, and reduced thermal conductivity were significantly enough for an overall increase in dimensionless figure of merit. The figure of merit for the baseline sample was approximately 0.18, and the highest values observed for the NaCl inclusion and porous samples were 0.34 and 0.25 respectively. These values are far less than that of what is considered a state of the art thermoelectric material, but the materials and methods used were simple, inexpensive, and scalable, showing great potential for applicability for use with optimized thermoelectric materials in hopes of further increasing their figure of merit.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1115/IMECE2017-72454
    http://hdl.handle.net/10057/15074
    Collections
    • ME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV