Show simple item record

dc.contributor.authorSteck, James E.
dc.contributor.authorBehrman, Elizabeth C.
dc.date.accessioned2018-04-25T14:54:39Z
dc.date.available2018-04-25T14:54:39Z
dc.date.issued2017
dc.identifier.citationSteck, James E.; Behrman, Elizabeth C. 2017. Biologically motivated quantum neural networks. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 1030-1034en_US
dc.identifier.isbn978-1-5386-1645-1
dc.identifier.issn1062-922X
dc.identifier.otherWOS:000427598701011
dc.identifier.urihttp://dx.doi.org/10.1109/SMC.2017.8122746
dc.identifier.urihttp://hdl.handle.net/10057/15006
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractThis paper presents one step toward creating the building blocks for machine intelligence that is inspired by its biological equivalent. The authors' quantum learning methods (deep quantum learning) are applied to quantum devices whose quantum bit (q-bit) activity is deliberately chosen to mimic the spiking behavior of biological neurons. Because of the "quantum" scale of these computers, these studies may lead to quantum hardware (rather than simulation) with enough processors and enough connectivity that can more closely mimic biological intelligence.en_US
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.ispartofseries2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC);
dc.subjectDeepen_US
dc.subjectRecognitionen_US
dc.subjectComputationen_US
dc.titleBiologically motivated quantum neural networksen_US
dc.typeConference paperen_US
dc.rights.holder© 2017, IEEEen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record