• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improved maximum inner product search with better theoretical guarantees

    Date
    2017-05
    Author
    Keivani, Omid
    Sinha, Kaushik
    Ram, Parikshit
    Metadata
    Show full item record
    Citation
    Keivani, Omid; Sinha, Kaushik; Ram, Parikshit. 2017. Improved maximum inner product search with better theoretical guarantees. 2017 International Joint Conference on Neural Networks (IJCNN), pp 2927-2934
    Abstract
    Recent interest in the problem of maximum inner product search (MIPS) has sparked the development of new solutions. The solutions (usually) reduce MIPS to the well-studied problem of nearest-neighbour search (NNS). To escape the curse of dimensionality, the problem is relaxed to accept approximate solutions (that is, accept anything that is approximately maximum), and locality sensitive hashing is the approximate NNS algorithm of choice. While being extremely resourceful, these existing solutions have a couple of aspects that can be improved upon - (i) MIPS can be reduced to NNS in multiple ways and there is lack of understanding (mostly theoretical but also empirical) when to choose which reduction for best accuracy or efficiency, and (ii) when MIPS is solved via approximate NNS, translating this approximation to the MIPS solution is not straightforward. To overcome these usability issues, we propose the use of randomized partition trees (RPTs) for solving MIPS. We still reduce MIPS to NNS but utilize RPTs to solve the NNS problem. RPTs find the exact NNS solution, hence the exact MIPS solution (with high probability), avoiding the need for any translation of approximation. The theoretical properties of RPTs allow us to definitively choose the best MIPS-to-NNS reduction. The empirical properties of RPTs allow us to significantly outperform the state-of-the-art while providing unique fine-grained control over the accuracy-efficiency tradeoff. For example, at 80% accuracy, RPTs are 2-5× more efficient than the state-of-the-art.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1109/IJCNN.2017.7966218
    http://hdl.handle.net/10057/14865
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV