Show simple item record

dc.contributor.authorKaragod, Vinay Vittal
dc.contributor.authorSinha, Kaushik
dc.date.accessioned2018-04-09T14:13:08Z
dc.date.available2018-04-09T14:13:08Z
dc.date.issued2017-05
dc.identifier.citationKaragod, Vinay Vittal; Sinha, Kaushik. 2017. A novel machine learning framework for phenotype prediction based on genome-wide DNA methylation data. 2017 International Joint Conference on Neural Networks (IJCNN), pp 1657-1664en_US
dc.identifier.isbn978-1-5090-6182-2
dc.identifier.issn2161-4393
dc.identifier.otherWOS:000426968701124
dc.identifier.urihttp://dx.doi.org/10.1109/IJCNN.2017.7966050
dc.identifier.urihttp://hdl.handle.net/10057/14864
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractDNA methylation (DNAm) is an epigenetic mechanism used by cells to control gene expression, and identification of DNAm biomarkers can assist in early diagnosis of cancer. Identification of these biomarkers can be done using CpG (Cytosine-phosphate guanine) sites, or particular regions in DNA. Previous machine learning methods known as MS-SPCA and EVORA have been used to link DNAm biomarkers to specific stages of cervical cancer using CpG data. In this paper, we propose a novel machine learning framework that yields greater AUC accuracy than the MS-SPCA and EVORA for predicting stages of cervical cancer using CpG data. This framework appears to be promising in regards to the data examined herein as well as for future biological studies.en_US
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.ispartofseries2017 International Joint Conference on Neural Networks (IJCNN);
dc.subjectCancer, DNAen_US
dc.subjectPredictive modelsen_US
dc.subjectPrincipal component analysisen_US
dc.subjectData modelsen_US
dc.subjectBiomarkersen_US
dc.subjectAnalytical modelsen_US
dc.titleA novel machine learning framework for phenotype prediction based on genome-wide DNA methylation dataen_US
dc.typeConference paperen_US
dc.rights.holder© 2017, IEEEen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record