• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A support vector machine approach to identification of proteins relevant to learning in a mouse model of Down Syndrome

    Date
    2017-05
    Author
    Eicher, Tara
    Sinha, Kaushik
    Metadata
    Show full item record
    Citation
    Eicher, Tara; Sinha, Kaushik. 2017. A support vector machine approach to identification of proteins relevant to learning in a mouse model of Down Syndrome. 2017 International Joint Conference on Neural Networks (IJCNN), pp 3391-3398
    Abstract
    Down Syndrome is a common disorder which causes intellectual disability among other symptoms. To date, no treatment exists for the learning difficulties associated with Down Syndrome. However, the pharmaceutical drug memantine has been shown to improve learning ability in a Down Syndrome model of mice (Ts65Dn) exposed to Context Fear Conditioning (CFC), an existing technique used in determining the extent of learning capability of mice. While the effect of memantine on learning capability in Ts65Dn mice is significant, the biological mechanism responsible for restoration of learning capability by memantine is poorly understood. One possible way to characterize this mechanism is by analyzing the neural protein profile data of normal and Down Syndrome mice with and without memantine treatment. In this work, we use a series of linear support vector machines to model the differential expression of 77 proteins obtained from the nuclear cortex of normal and Ts65Dn mice, with and without memantine treatment and with and without CFC stimulation. We use feature selection by weight threshold to select those proteins which play a significant role in characterizing each model. Per our findings, these subsets of proteins can be used to build more accurate classification models of the data than those subsets chosen using unsupervised learning or statistical analyses in previous studies. We recommend that the subsets of proteins selected using our proposed method be utilized in further biological study aiming to understand the effects of memantine on learning restoration.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1109/IJCNN.2017.7966282
    http://hdl.handle.net/10057/14863
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV