Show simple item record

dc.contributor.authorZhang, Yinlong
dc.contributor.authorLiang, Wei
dc.contributor.authorHe, Hongsheng
dc.contributor.authorTan, Jindong
dc.date.accessioned2018-04-09T14:12:29Z
dc.date.available2018-04-09T14:12:29Z
dc.date.issued2017-09
dc.identifier.citationZhang, Yinlong; Liang, Wei; He, Hongsheng; Tan, Jindong. 2017. Kinematic chain based multi-joint capturing using monocular visual-inertial measurements. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)en_US
dc.identifier.isbn978-1-5386-2682-5
dc.identifier.issn2153-0858
dc.identifier.otherWOS:0000426978202021
dc.identifier.urihttp://dx.doi.org/10.1109/IROS.2017.8205996
dc.identifier.urihttp://hdl.handle.net/10057/14862
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractCombining light-weight visual and inertial modalities for motion capturing has been popular in robotics researches. There exist scale ambiguity, inaccurate pose estimation with little or no baseline, incremental drifts over time in visual-inertial fusion. Thus, in this paper, we propose a robust motion capturing method based on the multi-joint kinematic chain using monocular visual-inertial sensors. Our method is able to recover monocular visual scale through the joint geometry constraint. Additionally, we take inertial pre-integration to assist visual outlier removal using Maximum A Posteriori method. Ultimately, the kinematic chain model is leveraged to constrain the associated multiple visual-inertial estimation drifts during long time tracking. In the experiments, we conduct multi-joint capturing on a robotic arm. The quality of motion reconstruction is evaluated by comparing the estimated results with the measurements from an optical motion tracking system OptiTrack.en_US
dc.description.sponsorshipNational Science Foundation of China [61233007, 61673371, 61305114, 71661147005]; Youth Innovation Promotion Association, CAS [2015157].en_US
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.ispartofseries2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);
dc.subjectVisualizationen_US
dc.subjectKinematicsen_US
dc.subjectTrackingen_US
dc.subjectCamerasen_US
dc.subjectOptimizationen_US
dc.subjectQuaternionsen_US
dc.subjectMatrix convertersen_US
dc.titleKinematic chain based multi-joint capturing using monocular visual-inertial measurementsen_US
dc.typeConference paperen_US
dc.rights.holder© 2017, IEEEen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record