The repository is currently being upgraded to DSpace 7. Temporarily, only admins can login. Submission of items and changes to existing items is prohibited until the completion of this upgrade process.
Nickel amine/imine and amine/amide bisthiolate complexes as models for the active site of nickel superoxide dismutase
Abstract
Nickel Superoxide Dismutase (NiSOD) catalyzes disproportionation of cytotoxic superoxide
radical to H2O2 and molecular O2. The mononuclear nickel center in the active site undergoes
alternate oxidation and reduction during the catalytic cycle and, the coordination geometry around
the Ni changes accordingly. The four-coordinate reduced state of the NiSOD is coordinated by the
N-terminal amine of His1, carboxamido N of Cys2 and, two thiolato S atoms from Cys2 and Cys6
in a square-planar geometry. The oxidized state contains an additional N donor arise from the
imidazole of His1 giving a five-coordinate square-pyramidal geometry. The highly unusual
coordination environment of the NiSOD makes it distinct among other known SODs and motivates
researchers to study about it.
This research is mainly focused on to understand the role of the amide N coordination in the
NiSOD which is only found in very few metalloenzymes. Through a synthetic model approach we
have synthesized two types of model systems which contain amine/amide and amine/imine
bisthiolate coordination. The imidazole N from His is the common N donor found in
metalloenzymes and we made imine N containing models to represent the normal His imidazole
N. The imine containing complexes, [Ni(NNimS]SR] were compared with the amide containing
complexes, [Ni(NNamS)SR] utilizing X-ray crystallography, spectroscopic techniques,
electrochemical measurements, and reactivity studies. Different thiolates with varying electron
donating ability were used to study the effect of nature of the thiolates on the properties of the Ni
center. This comparison allows us to understand the effective role of the amide N donation in
NiSOD. In addition to our attempts at synthesizing four-coordinate NiN2S2 model complexes, this
work describes our attempts at synthesizing NiN3S2 complexes as models for the oxidized state of
the NiSOD.
Description
Thesis (Ph.D.)-- Wichita State University, College of Liberal Arts and Sciences, Dept. of Chemistry