dc.contributor.advisor | Houseman, Gregory R. | |
dc.contributor.author | Schouten, Olivia S. | |
dc.date.accessioned | 2018-01-29T17:54:26Z | |
dc.date.available | 2018-01-29T17:54:26Z | |
dc.date.issued | 2017-05 | |
dc.identifier.other | t17026s | |
dc.identifier.uri | http://hdl.handle.net/10057/14486 | |
dc.description | Thesis (M.S.)--Wichita State University, Fairmount College of Liberal Arts and Sciences, Dept. of Biological Sciences | |
dc.description.abstract | Within communities, organisms potentially self-organize through endogenous processes
that create non-random spatial structure as they interact with one another or modify the abiotic
environment. In contrast, exogenous processes such as environmental heterogeneity or variable
immigration are thought to be dominant processes controlling these spatial patterns. Although
both endogenous and exogenous processes likely occur, their relative importance is still largely
unknown because of limited analytical tools and the lack of experimental evidence - particularly
those that address exogenous sources of environmental heterogeneity. Here, I used a soil
heterogeneity experiment to examine the relative effect of endogenous and exogenous processes
on plant spatial structure after five years of community assembly. Soil heterogeneity was
manipulated by splitting the vertical soil profile into three soil-types that were randomly assigned
to 40x40 cm patches within 2.4x2.4 m plots. Homogeneous plots were created by mixing all soils
before filling each patch. Thirty-four grassland species were then sown into all plots and allowed
to grow for five years after which the location of all plants were mapped using a 5x5 cm grid.
Results from point-pattern spatial analysis indicated that, even in the absence of soil
heterogeneity and seed dispersal limitation, spatial structure was primarily generated by
endogenous processes. Although soil heterogeneity increased species aggregation at certain
scales, most of the spatial structure was created by endogenous processes. These results suggest
that endogenous processes are more important than expected for generating spatial structure in
grasslands, and these processes are likely important for plant coexistence and species abundance
patterns in this ecosystem. | |
dc.format.extent | viii, 39 pages | |
dc.language.iso | en_US | |
dc.publisher | Wichita State University | |
dc.rights | Copyright 2017 by Olivia S. Schouten
All Rights Reserved | |
dc.subject.lcsh | Electronic dissertation | |
dc.title | Plant spatial structure is more dependent on endogenous processes than soil heterogeneity in an assembling community | |
dc.type | Thesis | |