dc.contributor.author | Isakov, Victor | |
dc.date.accessioned | 2018-01-07T19:16:39Z | |
dc.date.available | 2018-01-07T19:16:39Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Isakov V. (2017) Chapter 5. Elliptic Equations: Many Boundary Measurements. In: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol 127. Springer, Cham, pp.149-210 | en_US |
dc.identifier.isbn | 978-3-319-51658-5 | |
dc.identifier.issn | 0066-5452 | |
dc.identifier.other | WOS:000417080100008 | |
dc.identifier.uri | http://dx.doi.org/10.1007/978-3-319-51658-5_5 | |
dc.identifier.uri | http://hdl.handle.net/10057/14442 | |
dc.description | Click on the DOI link to access the article (may not be free). | en_US |
dc.description.abstract | We consider the Dirichlet problem (4.0.1), (4.0.2). At first we assume that for any Dirichlet data g0 we are given the Neumann data g1; in other words, we know the results of all possible boundary measurements, or the so-called Dirichlet-to-Neumann operator Λ:H1/2(∂Ω)→H−1/2(∂Ω)Λ:H1/2(∂Ω)→H−1/2(∂Ω), which maps the Dirichlet data g0 into the Neumann data g1. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartofseries | Applied Mathematical Sciences;v.127 | |
dc.title | Elliptic Equations: Many Boundary Measurements | en_US |
dc.type | Book chapter | en_US |
dc.rights.holder | © Springer International Publishing AG 2017 | en_US |