Show simple item record

dc.contributor.authorIsakov, Victor
dc.date.accessioned2018-01-07T19:16:39Z
dc.date.available2018-01-07T19:16:39Z
dc.date.issued2017
dc.identifier.citationIsakov V. (2017) Chapter 5. Elliptic Equations: Many Boundary Measurements. In: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol 127. Springer, Cham, pp.149-210en_US
dc.identifier.isbn978-3-319-51658-5
dc.identifier.issn0066-5452
dc.identifier.otherWOS:000417080100008
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-51658-5_5
dc.identifier.urihttp://hdl.handle.net/10057/14442
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractWe consider the Dirichlet problem (4.0.1), (4.0.2). At first we assume that for any Dirichlet data g0 we are given the Neumann data g1; in other words, we know the results of all possible boundary measurements, or the so-called Dirichlet-to-Neumann operator Λ:H1/2(∂Ω)→H−1/2(∂Ω)Λ:H1/2(∂Ω)→H−1/2(∂Ω), which maps the Dirichlet data g0 into the Neumann data g1.en_US
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesApplied Mathematical Sciences;v.127
dc.titleElliptic Equations: Many Boundary Measurementsen_US
dc.typeBook chapteren_US
dc.rights.holder© Springer International Publishing AG 2017en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record